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1. INTRODUCTION

Tapered cantilever beams are common elements of many aeronautical, civil and
mechanical engineering structures. Important examples of tapered elements
encountered in engineering include tubomachinery blades, antennas and
components of instrumentation. A vibration analysis to determine the "rst-mode
natural frequency may be required when designing systems using these elements.

Analytical methods of obtaining the "rst-mode natural frequency of beams
include Rayleigh's method, the Rayleigh}Ritz method, and the Galerkin method;
the methods are described by Dimarogonas [1]. Software programs are also
available to predict the natural frequencies of beams. The methods generally
require knowledge of the material properties (E and o) as well as the geometry of
the beam.

Numerous authors have used an equation in the form of equation (1) to describe
natural frequencies of tapered cantilever beams. Conway et al. [2] and Georgian
[3] obtained values of c

1
for truncated conical beams with various taper ratios

by solution of the Bernoulli}Euler equation. Mabie and Rogers [4] also solved
the Bernoulli}Euler equation to obtain values of c

1
for truncated beams with

rectangular cross-sections for various taper ratios. Timoshenko et al. [5] presents
values of c

1
for cantilever beams with rectangular and conical cross-sections for

taper ratios of zero and one:
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Ho!mann and Hooper [6, 7] presented an equation for the "rst-mode natural
frequency of #y rods as a function of the large de#ection rod sti!ness, the mass of
the tip section of the rod, and a mass distribution parameter. The mass distribution
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parameter was shown to be a function of the location of the center of gravity of the
tip section of the rod. The material properties of each of the hollow graphite #y rods
were unknown, were typically di!erent for each rod, and were di$cult to measure
without destructive testing. Use of the equation allows the natural frequency of the
rod to be obtained with simple measurements of sti!ness, tip-section mass and
center of gravity location without knowledge of material properties and without
the need for the instrumentation required to measure natural frequency. The
equation also identi"es the functional interrelationship between frequency, mass,
sti!ness and the mass distribution parameter.

In this study, a simple relationship for determination of the "rst-mode natural
frequency of tapered cantilever beams with linear tapers is presented as a function
of the low-de#ection beam sti!ness, the beam mass, and a mass distribution
parameter (C). The value of C, obtained using reference results, is presented as
a function of the taper ratio of the beam. Conical truncated beams, truncated
wedges with vibration perpendicular to the parallel sides of the taper, and truncated
wedges with vibration parallel to the parallel sides of the taper have been investi-
gated. The method, initially presented by Ho!mann and Wertheimer [8], is simple
and accurate. If sti!ness is determined experimentally, the method does not require
a knowledge of the material properties of the beam.

2. GOVERNING EQUATIONS

The standard form of an equation for the "rst-mode natural frequency of
a tapered cantilever beam is shown in equation (1). Equation (1) has been
transformed to equation (2). Values of c

1
, c

2
, c

3
and C in the following equations

are functions dependent upon the mass distribution or geometry of the beam:
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The denominator of the right-hand side of equation (2) is related to the mass of
the beam as
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M
. (3)

An equation for the de#ection of a cantilever beam with an applied tip load is
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The rod sti!ness (S ) has been de"ned as the tip load (P) divided by tip de#ection
(y

t
). Therefore,
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An equation for the natural frequency of a cantilever beam is obtained by
combining equations (2), (3) and (5):

f (Hz)"CJS(N/m)/M(kg) . (6)

The relationship between the mass distribution parameters is

C"c
1S
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c
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c
3

. (7)

The equations presented above are valid for slender tapered beams with the
assumption of small tip de#ection. Equation (6) shows the relationship between
natural frequency, sti!ness to mass ratio, and the mass distribution parameter. If
beams sti!ness and mass are determined experimentally, the properties of the beam
need not be known. Barten [9], Prathap and Varadan [10], Takahashi [11] and
Verma and Murthy [12] all found that the natural frequency of cantilever beams
was essentially independent of amplitude of tip de#ection for tip de#ections less
than ¸/4.

3. RESULTS AND DISCUSSION

In this study, three classes of tapered cantilever beams were investigated (see
Figure 1). The truncated cone, the truncated tapered wedge (B"B(x) ) with
vibration perpendicular to the parallel sides of the taper, and the truncated tapered
wedge (H"H(x) ) with vibration parallel to the parallel sides of the taper. For each
geometry, linear tapers were considered. A description of the method to determine
values of c

1
, c

2
and c

3
is presented below; values of the mass distribution parameter

(C) are then presented.

3.1. DETERMINATION OF c1
The results of Conway et al. [2], Georgian [3], Mabie and Rogers [4] and

Timoshenko et al. [5] were used to obtain values of c
1

for each of the beams.
Best-"t fourth order polynomial equations were used to describe the relationships
for c

1
and are presented below. The equations for c

1
"t the published results with

a maximum deviation of 0)5% and are presented in Figure 2. The value of c
1

for all
beams is 0)56 at ¹R"1.

For the case of the truncated cone (¹R"D
t
/D

0
),

c
1
"1)39!2)87¹R#5)29¹R2!5)42¹R3#2)17¹R4. (8)

For the case of the variable width (B"B(x) ) constant height truncated wedge
(¹R"B

t
/B

0
),

c
1
"1)14!1)95¹R#3)35¹R2!3)08¹R3#1)10¹R4. (9)

For the case of the variable height beam (H"H (x)) constant width truncated
wedge (¹R"H

t
/H

0
),

c
1
"0)846!1)22¹R#2)534¹R2!2)56¹R3#0)96¹R4. (10)



Figure 1. Geometry of cantilever beams: (a) conical beam; (b) B"B (x) beam; (c) H"H (x)
beam.
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3.2. DETERMINATION OF c
2

For all beam geometries, the mass of the constant density beam was determined
by

M"P
L

0

oAdx. (11)

The resultant values of c
2
, obtained using equation (3), are presented below and are

presented graphically in Figure 3. For the truncated cone,
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1#¹R#¹R2

. (12)



Figure 2. c
1
versus taper ratio:**, conical beam; } } }, B"B (x) beam; - - - - - - -, H"H (x) beam.

Figure 3. c
2

versus taper ratio: **, conical beam; } } }, rectangular beams.
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For each of the truncated wedges,
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. (13)



Figure 4. c
3
curves taper ratio:**, conical beam; } } }, B"B (x) beam; - - - - - -, H"H (x) beam.
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3.3. DETERMINATION OF c3
For all tapered beam geometries, beam tip de#ection with an applied tip load

was obtained by integration of the di!erential equation of the elastic curve,

d2y
dx2

"

P (¸!x)
EI

. (14)

The equations for c
3

are presented below and are presented graphically in Figure 4.
The value of c

3
for each beam approaches the classical value of 3 for ¹R"1.

For the case of the truncated cone,

c
3
"3¹R. (15)

For the case of the variable width (B"B(x) ) constant height truncated wedge
with tip loads applied perpendicular to the parallel sides of the taper (with
a"1!¹R),
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. (16)

For the case of the variable height (H"H(x) ) constant width truncated wedge
with tip loads applied parallel to the parallel sides of the taper,
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. (17)

3.4. MASS DISTRIBUTION PARAMETER (C)

Equation (7) was used to calculate values of C for each beam geometry. The
results are presented graphically in Figure 5 and best-"t polynomial equations are



Figure 5. C versus taper ratio:**, conical beam; } } }, B"B (x) beam; - - - - - -, H"H (x) beam.
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presented below. The values for C along with the use of equation (6) allows the
"rst-mode natural frequency of tapered cantilever beams to be calculated.

For the case of the conical truncated cone, the following is valid with a maximum
deviation of 1% from calculated values for taper ratios between 0)1 and 1:

C"2)143!11)71¹R#35)00¹R2!54)20¹R3#41)34¹R4!12)25¹R5. (18)

For the case of the truncated tapered wedge with vibration perpendicular to the
parallel sides of the wedge (B"B(x)), the following is valid with a maximum
deviation of 0)3% for taper ratios between 0)05 and 1:

C"0)569!0)925¹R#1)72¹R2!1)64¹R3#0)60¹R4. (19)

For the case of the truncated tapered wedge with vibration parallel to the parallel
sides of the wedge (H"H(x) ), the following is valid with a maximum deviation of
1% for taper ratios between 0)1 and 1:

C"0)904!3)46¹R#10)54¹R2!17)27¹R3#14)08¹R4!4)47¹R5. (20)
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APPENDIX: NOMENCLATURE

a beam taper parameter,"1!¹R
A cross-sectional area of beam element
B beam width
C, c mass distribution parameters for the beam
D beam diameter
E modulus of elasticity of beam material
f "rst-mode natural frequency of beam
H beam height
I moment of inertia of beam element
¸ beam length
M mass of beam
P applied static tip load
S beam sti!ness,"P/y

t
¹R taper ratio,"D

t
/D

0
or B

t
/ B

0
or H

t
/H

0x distance from beam butt
y beam de#ection
o density of beam material

Subscripts
0 beam butt location (x"0)
t beam tip location (x"¸)
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